Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

نویسندگان

  • Sonja Greven
  • Thomas Kneib
چکیده

In linear mixed models, the Akaike information criterion (AIC) is often used to decide on the inclusion of a random effect. An important special case is the choice between linear and nonparametric regression models estimated using mixed model penalized splines. We investigate the behavior of two commonly used versions of the AIC, derived either from the implied marginal model or the conditional model formulation. We find that the marginal AIC is not asymptotically unbiased for twice the expected relative Kullback-Leibler distance, and favors smaller models without random effects. For the conditional AIC, it is computationally costly for large sample sizes to correct for estimation uncertainty. However, ignoring it, as is common practice, induces a bias that yields the following behavior: Whenever the random effects variance estimate is positive (even if small), the more complex model is preferred. We illustrate our results in a simulation study, and investigate their impact in modeling childhood malnutrition in Zambia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional information criteria for selecting variables in linear mixed models

In this paper, we consider the problem of selecting the variables of the fixed effects in the linear mixed models where the random effects are present and the observation vectors have been obtained frommany clusters. As the variable selection procedure, we here use the Akaike Information Criterion, AIC. In the context of the mixed linear models, two kinds of AIC have been proposed: marginal AIC...

متن کامل

Asymptotic Equivalence between Cross-Validations and Akaike Information Criteria in Mixed-Effects Models

For model selection in mixed effects models, Vaida and Blanchard (2005) demonstrated that the marginal Akaike information criterion is appropriate as to the questions regarding the population and the conditional Akaike information criterion is appropriate as to the questions regarding the particular clusters in the data. This article shows that the marginal Akaike information criterion is asymp...

متن کامل

A note on conditional Akaike information for Poisson regression with random effects

A popular model selection approach for generalized linear mixed-effects models is the Akaike information criterion, or AIC. Among others, [5] pointed out the distinction between the marginal and conditional inference depending on the focus of research. The conditional AIC was derived for the linear mixed-effects model which was later generalized by [4]. We show that the similar strategy extends...

متن کامل

Gaussian Process Single Index Models for Conditional Copulas

Parametric conditional copula models allow the copula parameters to vary with a set of covariates according to an unknown calibration function. In this paper we develop a flexible Bayesian method to estimate the calibration function of a bivariate conditional copula. We construct a prior distribution over the set of smooth calibration functions using a sparse Gaussian process (GP) prior for the...

متن کامل

Modified conditional AIC in linear mixed models

In linear mixed models, the conditional Akaike Information Criterion (cAIC) is a procedure for variable selection in light of the prediction of specific clusters or random effects. This is useful in problems involving prediction of random effects such as small area estimation, and much attention has been received since suggested by Vaida and Blanchard (2005). A weak point of cAIC is that it is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009